Large-Scale Sparsified Manifold Regularization

نویسندگان

  • Ivor W. Tsang
  • James T. Kwok
چکیده

Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is slow on testing. Moreover, existing semi-supervised learning methods, including the LapSVM, can only handle a small number of unlabeled examples. In this paper, we integrate manifold regularization with the core vector machine, which has been used for large-scale supervised and unsupervised learning. By using a sparsified manifold regularizer and formulating as a center-constrained minimum enclosing ball problem, the proposed method produces sparse solutions with low time and space complexities. Experimental results show that it is much faster than the LapSVM, and can handle a million unlabeled examples on a standard PC; while the LapSVM can only handle several thousand patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Linear Manifold Regularization for Large Scale Semi-supervised Learning

The enormous wealth of unlabeled data in many applications of machine learning is beginning to pose challenges to the designers of semi-supervised learning methods. We are interested in developing linear classification algorithms to efficiently learn from massive partially labeled datasets. In this paper, we propose Linear Laplacian Support Vector Machines and Linear Laplacian Regularized Least...

متن کامل

Manifold regularization based on Nystr{ö}m type subsampling

In this paper, we study the Nyström type subsampling for large scale kernel methods to reduce the computational complexities of big data. We discuss the multi-penalty regularization scheme based on Nyström type subsampling which is motivated from well-studied manifold regularization schemes. We develop a theoretical analysis of multi-penalty least-square regularization scheme under the general ...

متن کامل

Online Manifold Regularization: A New Learning Setting and Empirical Study

We consider a novel “online semi-supervised learning” setting where (mostly unlabeled) data arrives sequentially in large volume, and it is impractical to store it all before learning. We propose an online manifold regularization algorithm. It differs from standard online learning in that it learns even when the input point is unlabeled. Our algorithm is based on convex programming in kernel sp...

متن کامل

A Semi-supervised Method for Multimodal Classification of Consumer Videos

In large databases, the lack of labeled training data leads to major difficulties in classification. Semi-supervised algorithms are employed to suppress this problem. Video databases are the epitome for such a scenario. Fortunately, graph-based methods have shown to form promising platforms for Semi-supervised video classification. Based on multimodal characteristics of video data, different fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006